

http://occrl.illinois.edu/tlc3

Mathematics as whiteness: Deconstructing Interest Convergence and Institutional Culture in Community Colleges

J. Luke Wood, San Diego State University Vilma Mesa, University of Michigan-Ann Arbor Helen Burn, Highline College Eboni Zamani-Gallaher, University of Illinois at Urbana-Champaign Council for the Study of Community Colleges Conference

> March 28-30, 2019 San Diego, California

Session Chair: Soko Starobin

http://occrl.illinois.edu/tlc3

Instructional Approaches and their Connection to Equity and Access in Math Classrooms

Vilma Mesa University of Michigan-Ann Arbor

http://occrl.illinois.edu/tlc3

Framing the work

- The knowledge exchanges that occur in the classroom are relational
- The nature of students and faculty interactions shape students' identities as mathematics doers when bounded by a common goal of learning a particular piece of content
- Race matters especially in "the contexts where mathematics learning and the struggle for mathematics literacy" occur
- Mathematics education does not empower everyone equally

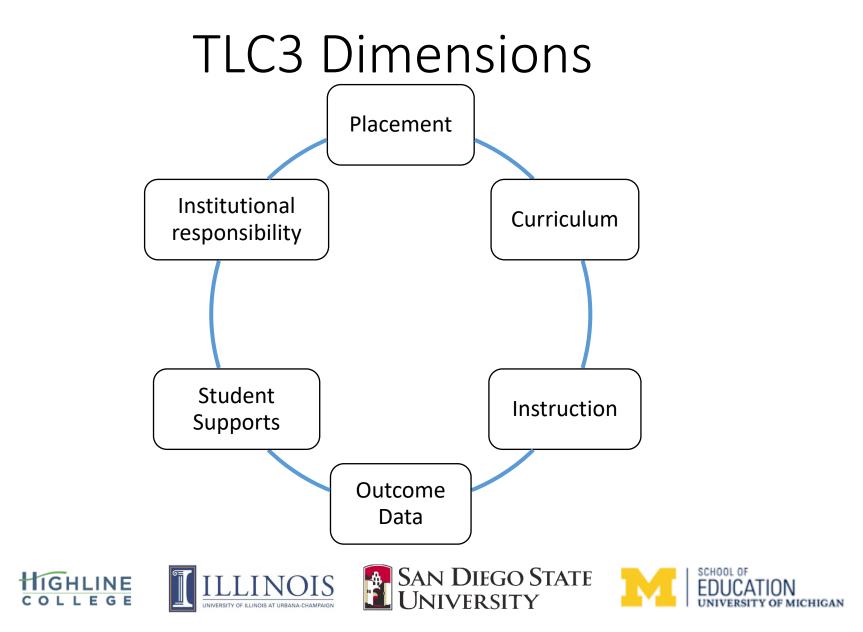
(Battey & Leyva, 2016; Gutiérrez, 2002; Martin, 2006, 2009)

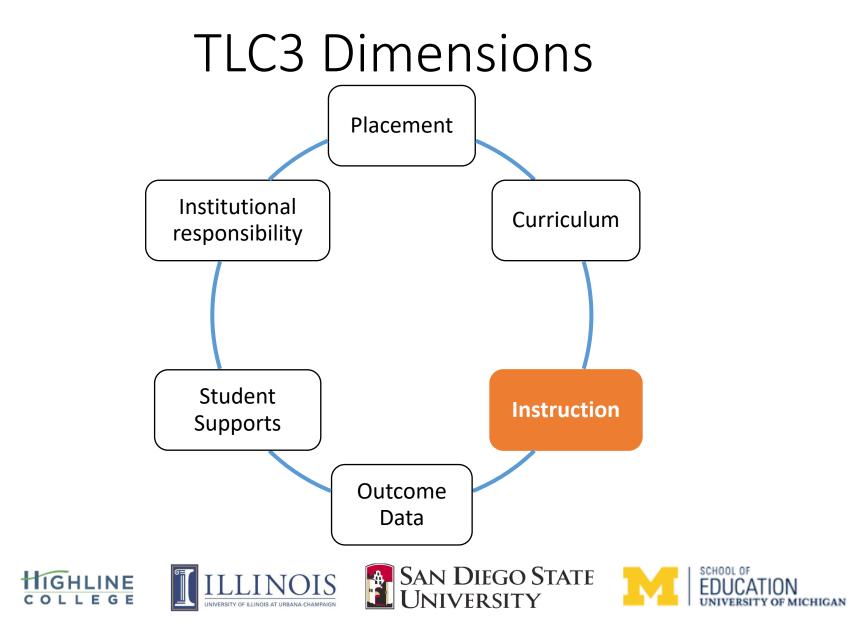
http://occrl.illinois.edu/tlc3

Context

- Case studies for the *Transitioning learners through* calculus at community colleges (TLC3):
 - Programs that show support for students transition from developmental courses to calculus 2
 - At each case we identify the level transparency of information flowing from various stakeholders on six dimensions

(Burn, Mesa, Wood, Zamani-Gallaher, 2016)



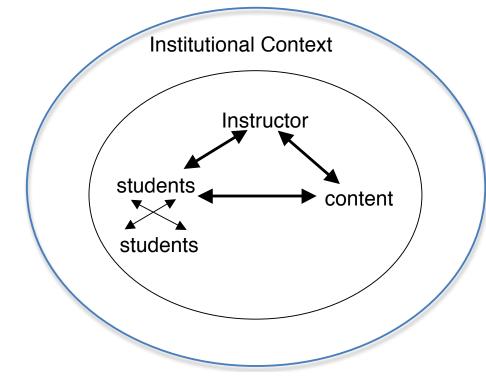


http://occrl.illinois.edu/tlc3

http://occrl.illinois.edu/tlc3

http://occrl.illinois.edu/tlc3

Instruction


The interactions that occur between students, the instructor, and the content inside the classroom. They are bounded by a particular institutional context

- Mathematical
- Relational

(Cohen, Raudenbush, Ball, 2003)

http://occrl.illinois.edu/tlc3

Native Americans in the US

- Disproportionate mis-representation in STEM fields
- Varied access to resources
- Scant data on mathematics faculty profiles
- Large proportion of students are placed in developmental education
- Almost non-existent research literature on Native American college students, instructors, or contexts in mathematics → Invisibility

GO STATE

http://occrl.illinois.edu/tlc3

Institutional context

- Tribal college, 100% enrollment students are Native American
 - Several award winning certificate programs
 - Clear connections to local university for transfer
- Focused on supporting their students
 - Modularization of courses
 - Tailored & flexible placement
 - Coaches and tutors fully available, including in dorms

EGO STATE

- Contracts for completing work
- Summer bridge programs

http://occrl.illinois.edu/tlc3

Institutional context cont.

- Complex system of data monitoring
- Explicit messages valuing Native American heritage
- Waved fees for some students; book costs are part of the tuition
- In-dorm counseling
- ..

Very strong sense of commitment (passion and devotion) to serving Native American students across all levels of the institution

EGO STATE

http://occrl.illinois.edu/tlc3

The Classroom

Mathematical practices

1. Mathematical Work

- Questions asked and by who
- Problems solved
 - →level of mathematical challenge of the classroom work
- 2. Student engagement
 - Organization
 - Who is in charge of the mathematics
- Relevance and Metacognition

- 1. Welcome-ness
- 2. Empowerment
- 3. Culturally relevant teaching
- 4. Performance monitoring
- 5. Classroom Environment

(Mesa & Thrill, 2018; Wood et al., 2015)

San Diego State University

http://occrl.illinois.edu/tlc3

Guiding questions

- To what extent are Native American students being invited to engage in mathematical challenging work?
- To what extent are Native American students being considered full members of the mathematics classroom?
- How transparent are the instructors regarding the need to engage Native American students in challenging mathematics and becoming a full participant of mathematical work?

GO STATE

http://occrl.illinois.edu/tlc3

Mathematical practices

- Lessons mainly led by the instructors
- Instructors asked many questions to engage their students
 - Of 823 questions in 7 lessons, 63% required a one answer; 28% required a yes/no answer.
- Instructors provided students with example problems
- Problems were mostly on learning procedures
- In most lessons: Students worked individually
- In two lessons: Students worked in small groups all the time

GO STATE

http://occrl.illinois.edu/tlc3

Relational Practices

- Regular use of empowerment, welcomeness, validation, and performance monitoring
- But not uniformly. Some instructors
 - Used students names
 - Reminded students of availability of coaching and tutoring
 - Checked students' performance in the classroom
 - Invited **all** students to participate
- No mention of Native American contexts
- Open ended tasks were not culturally relevant
- No explicit messages about Native American's competency and belonging into mathematics

DIEGO STATE

http://occrl.illinois.edu/tlc3

Mismatch?

Mathematics lessons do not seem any different from other mathematics lessons in other colleges Patterns of interaction do not uphold the expressed institutional commitment to empower Native American students

+

http://occrl.illinois.edu/tlc3

Why the mismatch?

Strong institutional commitment to serve Native American Students Mathematics lessons do not seem any different from other mathematics lessons in other colleges Patterns of interaction do not uphold the expressed institutional commitment to empower Native American students

• Mathematics is a white space

Predominant rules of interaction in math classes counter interaction patterns advocated for Native American students

- discussion instead of being told
- group work instead of individual work
- connections to context rather than abstract work
- collaboration instead of competition
- Mathematics instructors do not share Native American heritage
 (Demmert 2001: National Indian Education Association)

(Demmert, 2001; National Indian Education Association 2016)

N DIEGO STATE

http://occrl.illinois.edu/tlc3

Next steps

- Hold conversations about the role of relationship building in mathematics classroom across the mathematics faculty
- Make explicit connections to Native American heritage, language, and traditions, and to their lived contexts
- Strengthen collaborations with adjunct faculty
- Requires:
 - Funding (expertise & time) for creating and sustaining such spaces
 - Understanding the role we play, as researchers, administrators, and practitioners, to transform these spaces

EGO STATE

http://occrl.illinois.edu/tlc3

References

Battey, D., & Leyva, L. A. (2016). A framework for understanding whiteness in mathematics education. *Journal of Urban Mathematics Education*, 9(2), 49-80.

Burn, H., Mesa, V., Wood, J. L., & Zamani-Gallaher, E. (2016). Transitioning learners to Calculus I in community colleges (TLC3): National Science Foundation (IUSE, 1625918, 1625387,1625946,1625891).

Demmert, W. G., Jr. (2001). *Improving academic performance among Native American students: A review of the research literature*. Eric Clearinghouse (ED 463917).

Gutiérrez, R. (2002). Beyond essentialism: The complexity of language in teaching mathematics to Latina/o students. *American Educational Research Journal, 39*(4), 1047-1088.

Martin, D. B. (2006). Mathematics learning and participation as racialized forms of experience: African American parents speak on the struggle for mathematics literacy. *Mathematical Thinking and Learning*, 8 (3), 197-229.

Martin, D. B. (2009). Researching race in mathematics education. *Teachers College Record*, 111(2), 295-338.

Mesa, V. & Thrill, C. (2018). Promoting equity in the classroom: A conceptual approach. Paper presented at the CSCC annual conference, Addison, TX.

National Indian Education Association. (2016). *Native nations and American schools: The history of natives in the American education system*. Washington, DC: National Education Association.

Wood, J. L., Harris III, F., & white, K. (2015). *Teaching men of color in the community college: A guidebook*. San Diego: Montezuma Publishing.

Entering and Participating in the Mathematics Classroom Space: Examination of Classroom Maps and Faculty Efforts to Support Southeast Asian Students

Helen Burn Highline College

http://occrl.illinois.edu/tlc3

Mathematics as a white institutional space

- Whites framed the organizational logic of the discipline
- Historical construction of the curriculum by white elites
- Numerical dominance of white people and exclusion of people of color in the field (see recent case of Dr. Edray Herber Goins)
- Mathematical knowledge and its production is assumed to be neutral, impartial, and equally accessible by all

(Martin, 2009)

O STATE

Model Minority Myth

- Ascribed intelligence/natural ability in math
- Research is more nuanced, but practitioners may have this bias
- Can negatively impact student help-seeking behavior
- Insidious in using Asian Americans as evidence of the "American dream" and in not calling out underperformance of white students

Less than high school diploma

http://occrl.illinois.edu/tlc3

Figure 2: Educational Attainment for Asian American Sub-Groups, 2008-2010

Bachelor's degree or higher

37.9% Hmong 14.7% Cambodian 37.4% 14.1% Laotian 33.8% 12.4% 29.4% Vietnamese 25.8% Chinese 19.3% 51.5% Thai 16.8% 43.8% **Bangladeshi** 16.6% 49.9% 13.4% Pakistani 53.9% **Asian Indian** 8.8% 71.1% Korean 52.7% 8.3% Filipino 7.9% 48.1% Sri Lankan 7.6% 57.4% Indonesian 7.3% 48.7% 5.3% Japanese 47.7% 4.8% Taiwanese 74.1%

SAN DIEGO STATE

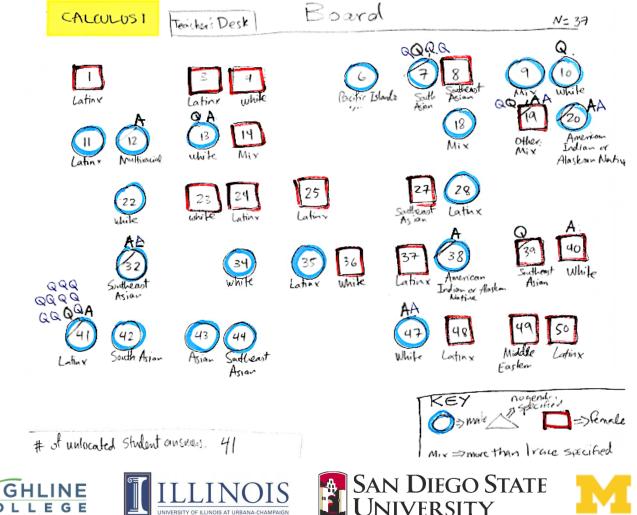
SCHOOL OF

http://occrl.illinois.edu/tlc3

TLC3 AANAPISI Case

Asian American, Native American, Pacific Islander Serving Institution (10% by enrollment)

- Selection High Southeast Asian population, AANAPISI eligible, math outcomes, program features
- Institutional identity proud, welcoming, beautiful
- Mathematics program proud, small and growing, changing
- Data collected site visit classroom observations, 8 faculty/admin/staff interviews, 3 student focus groups (<10), site visit notes, institutional documents



http://occrl.illinois.edu/tlc3

The Classroom Space (n = 299 surveys, 88% response rate)

ĦI

со

0

o°

http://occrl.illinois.edu/tlc3

Battey & Leyva (2016)

- How does whiteness operate in mathematics?
- Who is privileged and who is oppressed?

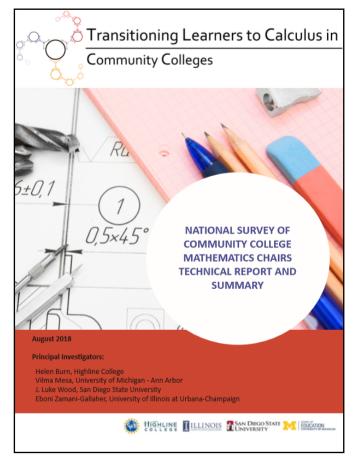
Framework for Understanding whiteness in Mathematics Education Institutional – ideological discourse, curriculum, organizational logic Labor – cognitive, emotional, behavioral effort

Identity – mathematics as a racialized form of experience, shaping and conforming to the norms

http://occrl.illinois.edu/tlc3

Institutional Data: Who is Oppressed?

- Inability to disaggregate data to identify Southeast Asian and Hmong students (11% AAPI by California CC Chancellor's Office)
- Classroom surveys
 - Southeast Asian representation by level:
 - Calculus 9%
 - Trig 9%
 - Precalc 0% 103 3% 201 0%
- Math courses were more male but not more white (~30%) as the level increased
- 17 surveys (6%) from Southeast Asian students: More gender parity than the overall class, similar in tending to be young, science and technology majors, 20% took developmental-level courses



http://occrl.illinois.edu/tlc3

TLC3 National Survey of Community College Mathematics Chairs (n = 455, 44% response rate)

45% had readily available access to data

49% had access but not readily available

17% disaggregated by race/ethnicity

AN DIEGO STATE

http://occrl.illinois.edu/tlc3

The Classroom Space – Data Collected

- Seating chart and student surveys (who asks and answers questions)
- Mathematical Practices (e.g., problems worked, who does the work, student engagement)
- Relational practices (e.g., welcomeness and validation, performance monitoring, culturally relevant teaching)

O STATE

http://occrl.illinois.edu/tlc3

The Classroom Space

Modern classroom facilities but very crowded: (>40, national average is <25)

In a 30-minute segment, there were 33 instructor questions 4 student questions 5 problems worked

23% of class time spent with students working problems

Median of 7 references to the relevance of the mathematics

http://occrl.illinois.edu/tlc3

In a 5-minute segment

Probability of:

Lecture with limited student response: .88 Lecture with extended student response: .30 Student working individually: .24 Student working in pairs: .19

Examples of Culturally Relevant Teaching in 5 of 8 classes (pop culture examples, providing different approaches to problems)

Relational strategies not specific to student subgroups

http://occrl.illinois.edu/tlc3

Who Asks and Answers Questions?

- Calculus (2 classes): 13 students answered; 15 asked questions 1 Southeast Asian student answered and asked (8%, 6%) 5 white students answered and asked (38%, 33%) 51 cases of unlocated student questions or answers
- **Trigonometry (2 classes)**: 2 students asked, 8 students asked 8 Southeast Asian students, none asked or answered Qs. 1 white student asked and 5 white students answered

http://occrl.illinois.edu/tlc3

Faculty interviews: How does your practice support Southeast Asian American students?

- Aware of Southeast Asian student subgroup
- Generally believed to do well although tends to be quiet
- Rising tide lifts all ships/color-blind approaches to supporting students: good teaching, office hours, tutoring center, study groups, space to work on campus
- Two instructors who lived in the community for a long time had more in-depth understanding of their Southeast Asian students (language and financial challenges, family responsibilities, cultural norms)

GO STATE

http://occrl.illinois.edu/tlc3

Connecting to whiteness: Who is privileged in the classroom space?

Students who can conform to and learn in this classroom space:

- "Interactive lecture" (Burn & Mesa, 2017)
- Willing to ask and answer questions in a high-paced environment
- Seek help outside of class: office hours, tutoring center, study groups, access to space to work on campus

O STATE

http://occrl.illinois.edu/tlc3

Implications for Southeast Asian and Hmong Students

- Relationship building is fundamental to helping students become full participants in and outside of class
- Understand financial and other resource needs
- Research is needed on Southeast Asian student learning experiences and success strategies
- Implications for co-requisite courses live learning and finding ways to identify prerequisite needs

http://occrl.illinois.edu/tlc3

A Taxonomy of Practices in Math: Insights from the Instructional Development Inventory

J. Luke Wood San Diego State University

http://occrl.illinois.edu/tlc3

Development of CCIDI

- "to inform professional development programming for instructional faculty"
- Twelve teaching and learning areas that have an intensified effect on success for students of color (Perceptions) (Relationships) (Practices)
- CC-IDI psychometric properties tested on 1,775 faculty members from 125 randomly selected community colleges.
- Threshold scores developed to compare against institutions in the top quarter producing community colleges.

DIEGO STATE

- Full sample 497, reduced sample 436
- Survey of math faculty (two rounds)

http://occrl.illinois.edu/tlc3

Development of CCIDI

Relational Strategies

- Disclosing
- · Welcomeness (inside)
- · Welcomeness (outside)
- Microaggressions
- Relationships
- Validation

Epistemology

- · Institutional Responsibility
- High Expectations

Teaching Strategies

- Empowerment
- · Collaborative Learning
- · Culturally relevant teaching
- Intrusiveness
- · Performance Monitoring

Faculty Student Engagement

http://occrl.illinois.edu/tlc3

Primary Composite Variables

- Cluster Variables
 - Culturally Relevant Teaching
 - Humanizing Practices
 - Racial Microaggressions
- Outcome Variables
 - Relationship Building
 - Validating Practices
 - Welcoming Engagement (Outside)
 - Intrusive Practices

http://occrl.illinois.edu/tlc3

Data Analysis

- Missing replacement (expectation maximization)
- Exploratory data analysis
- Reliability analyses
 - Culturally Relevant Teaching 3 items, .867
 - Racial Microaggressions 4 items, .969
 - Humanizing Practices 3 items, .896
- K-means cluster analysis
- Profile Analysis
- Analysis of Variance with Posthocs (Bonferroni & Dunnett's C)

DIEGO STATE

http://occrl.illinois.edu/tlc3

Sample

	AGE 18-31 32 to 38 39 to 45 46 to 52		Percent		
			4.6%		
			13.8%		
			17.5%		
			22.1%		
	53 to 59		18.9%		
	60 to 66		12.2%		
	67 and older		10 8%		
Class Size		Percent			
Less than 20		24.4%			
21 to 30		46.4%			
31 to 40		23.0%			
41 or more		6	6.2%		

	•		
GENDER	Percent		
Woman	55.2%		
Man	44.3%		
Time Status	Percent		
Full-Time (T)	41.6%		
Full-Time (TT)	10.6%		
Full-Time (NTT)	15.9%		
Part-Time (HO)	18.2%		
Part-Time (Mult)	13.7%		
Other	Mean		
# Classes	4.1 (2.35)		
Years Teaching	19.7 (8.25)		

Modality	Percent
Online	3.9%
Hybrid	13.1%
Face to Face	77.1%
Other	6.0%

Level	Percent
Dev Math	28.0%
G.E.	20.9%
Major Required	25.2%
Multiple	24.5%
Dual Enroll	1.4%

http://occrl.illinois.edu/tlc3

K-means cluster

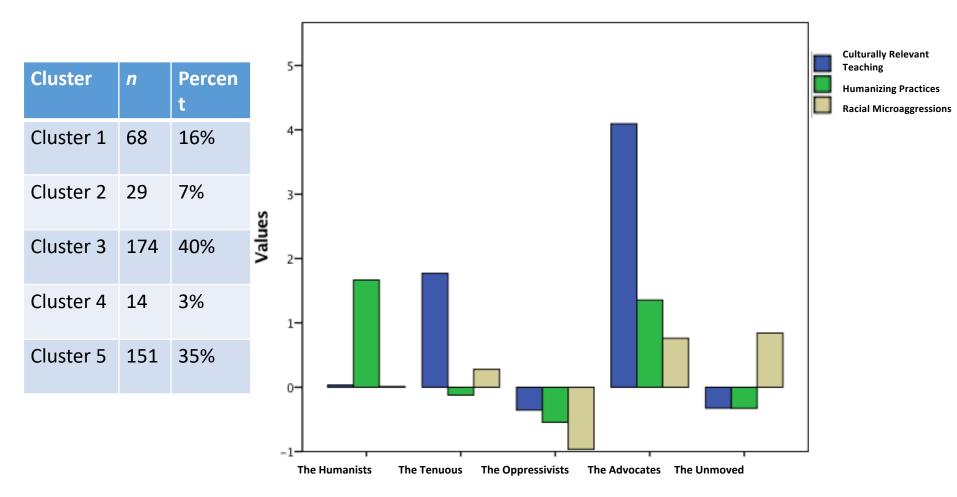
- Convergence was achieved with five clusters
- Minimum distance between initial clusters was 3.557
- All variables significantly contributed to cluster formation
- Created new variable using cluster membership

	Cluster	n	Percent
7	Cluster 1	68	15.59%
	Cluster 2	29	6.65%
	Cluster 3	174	39.9%
	Cluster 4	14	3.2%
	Cluster 5	151	34.6%

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Sig.
Zscore(CRT_FINAL)	90.874	4	.166	431	547.755	.000
Zscore(HUM_FINAL)	70.519	4	.374	431	188.474	.000
Zscore(MICRO_FINAL)	69.521	4	.377	431	184.484	.000

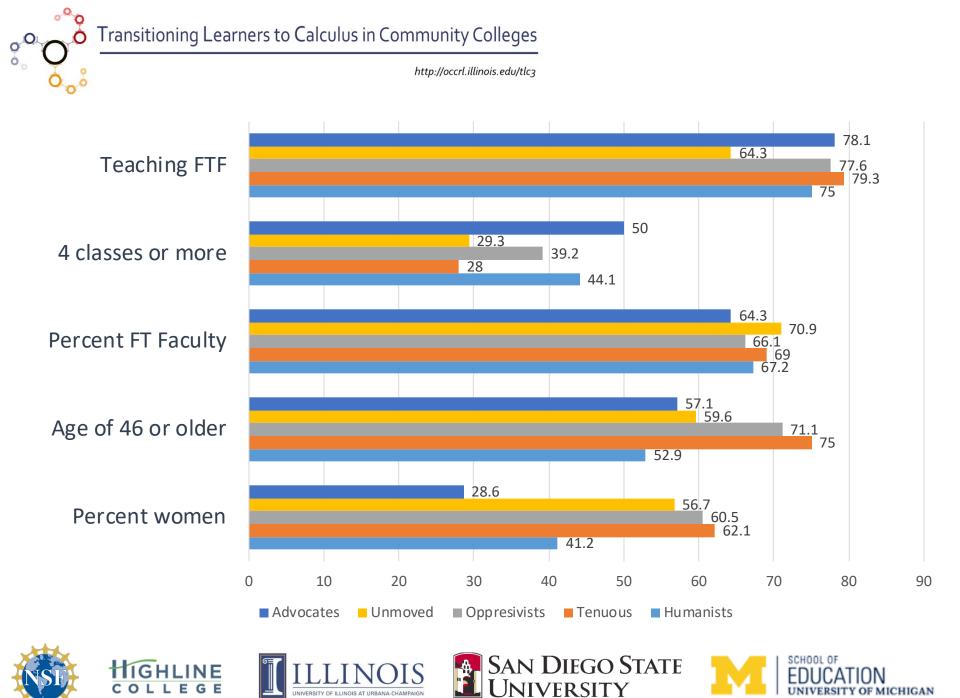
an Diego State

ANOVA



http://occrl.illinois.edu/tlc3

K-means cluster



SAN DIEGO STATE University SCHOOL OF

http://occrl.illinois.edu/tlc3

27.8

27.6

30

25

San Diego State University

36.8

40

35

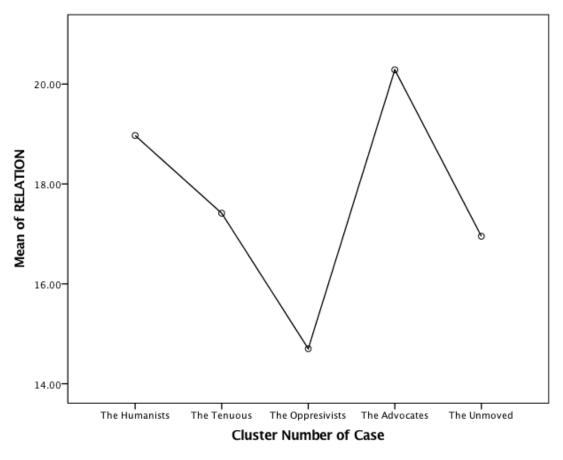
SCHOOL OF

7.1

6

Classes with 41 or more 6.3 10.3 4.4 19.5 19.1 Average Years Teaching 20.7 20.7 17.8 7.1 Teaching dev math 20.7 0 5 10 15 20 Advocates Unmoved Oppresivists Tenuo us Humanists

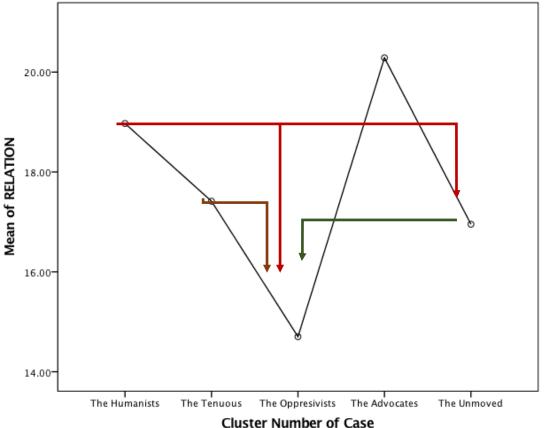
0



http://occrl.illinois.edu/tlc3

Findings: Relationship Building

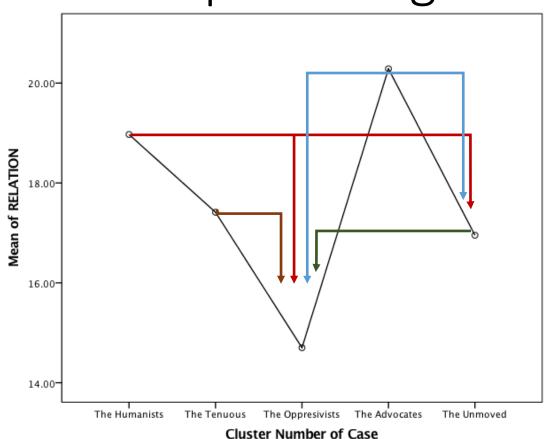
- Satisfied assumption of homogeneity of variance (Levene's 1.672, p=n.s.)
- ANOVA results
 F = 22.921, p<.001,
 n²= .175 (Large)



http://occrl.illinois.edu/tlc3

Findings: Relationship Building

- Satisfied assumption of homogeneity of variance (Levene's 1.672, p=n.s.)
- ANOVA results
 F = 22.921, p<.001,
 n²= .175 (Large)

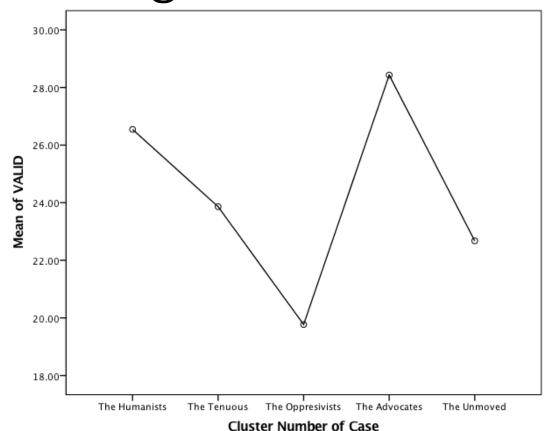


http://occrl.illinois.edu/tlc3

Findings: Relationship Building

- Satisfied

 assumption of
 homogeneity of
 variance
 (Levene's 1.672,
 p=n.s.)
- ANOVA results F =22.921, p<.001, n²= .175 (Large)



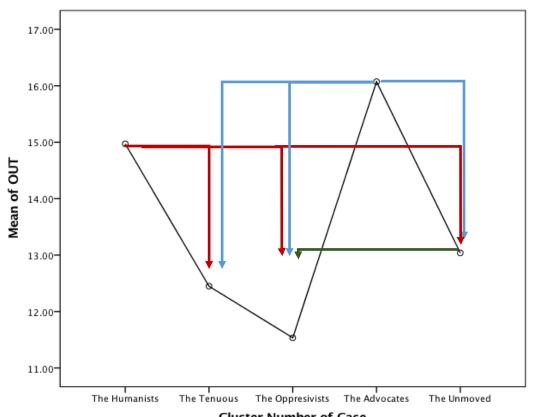
http://occrl.illinois.edu/tlc3

Findings: Validating Practices

- Violated assumption of homogeneity of variance (Levene's 13.706, p<.001)
- Welch ANOVA results *F* =27.388, *p*<.001, *n*²= .60 (Large)

San Diego State

NSF



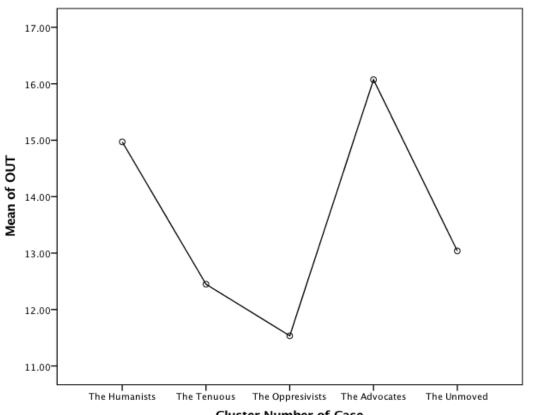
http://occrl.illinois.edu/tlc3

Findings: Welcomeness Outside

- Satisfied

 assumption of
 homogeneity of
 variance (Levene's
 1.932, p=n.s.)
- ANOVA results F =16.652, p<.001, n²= .13 (Medium)

Cluster Number of Case



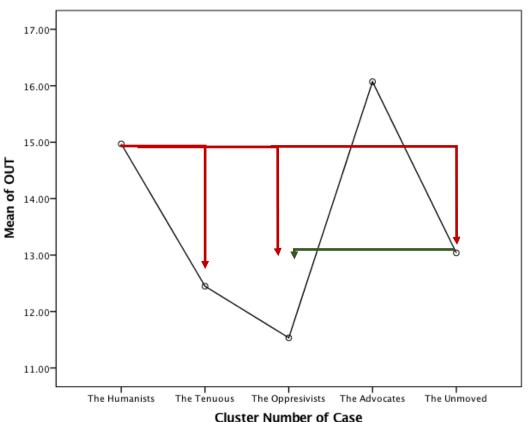
http://occrl.illinois.edu/tlc3

Findings: Welcomeness Outside

- Satisfied

 assumption of
 homogeneity of
 variance (Levene's
 1.932, p=n.s.)
- ANOVA results F =16.652, p<.001, n²= .13 (Medium)

Cluster Number of Case



http://occrl.illinois.edu/tlc3

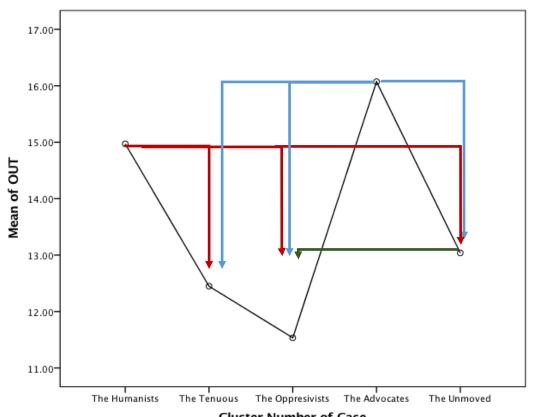
Findings: Welcomeness Outside

- Satisfied

 assumption of
 homogeneity of
 variance (Levene's
 1.932, p=n.s.)
- ANOVA results F =16.652, p<.001, n²= .13 (Medium)

San Diego State

NSF



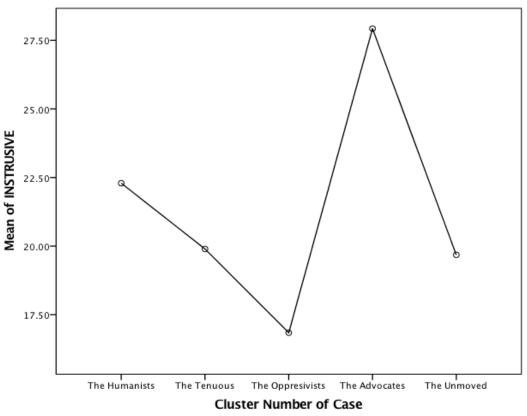
http://occrl.illinois.edu/tlc3

Findings: Welcomeness Outside

- Satisfied

 assumption of
 homogeneity of
 variance (Levene's
 1.932, p=n.s.)
- ANOVA results F =16.652, p<.001, n²= .13 (Medium)

Cluster Number of Case



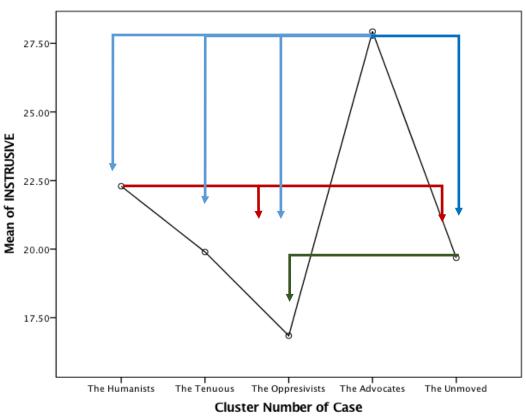
http://occrl.illinois.edu/tlc3

Findings: Intrusive Practices

- Violated

 assumption of
 homogeneity of
 variance
 (Levene's 3.256,
 p=.012)
- Welch ANOVA results *F* =38.722, *p*<.001, *n*²= .67 (Large)

SAN DIEGO STATE



http://occrl.illinois.edu/tlc3

Findings: Intrusive Practices

- Violated
 assumption of
 homogeneity of
 variance
 (Levene's 3.256,
 p=.012)
- Welch ANOVA results *F* =38.722, *p*<.001, *n*²= .67 (Large)

http://occrl.illinois.edu/tlc3

Raceless? Reframing and Reflecting on Community College Mathematics

Eboni M. Zamani-Gallaher University of Illinois at Urbana-Champaign

http://occrl.illinois.edu/tlc3

Colorblind Ideological Norms in Mathematics

- Blind spots and perceptions of neutrality
 - Assumptions of objectivity that math is culturally unbiased, computation as universal and mathematics for all
- Across the educational pipeline, racially minoritized students are generally underserved in mathematics in contrast to dominant mainstream white students
- Sociohistorical forces and differential treatment of URMs in mathematics-related contexts
- Rhetorical reform when an analysis of equity is limited to access, participation, and completion in mathematics and not the systemic issues, racial realities and tensions

DIEGO STATE

http://occrl.illinois.edu/tlc3

Mathematics Standards, Curriculum, and Reforms

- The status of African American, Latinx, Native American, as well as poor students has not been a primary determinant driving mathematics education reform (Martin, 2003)
- Curricular misalignment in course taking at the secondary level
 - school districts require all student irrespective of their prior preparation to enroll in algebra by 9th grade
- High-stakes testing and placement tests in math have disproportionately impacted URMs in a punitive/negative manner given less access to high-quality teaching (Gutstein, 2003; Tate & Rousseau, 2002)
- Heavy reliance on large numbers of foreign-born workers to fill math and science-based technical jobs and less on the large pool of URMS

IEGO STATE

http://occrl.illinois.edu/tlc3

Framing Equity

- Math curriculum, teaching, and evaluation are connected to patterns of differential • cultural, economic, political and social power -- differential power
- How has math functioned in a manner that recreates and furthers inequalities? •
- Equity discussions and equity-related efforts in mathematics education have been largely • focused on modifying curricula, classroom environments, and school cultures absent considerations of differential social and structural realities (Gutierrez, 2013; Martin, 2003, 2008)
- Mathematical opportunities are situated in larger realities hence the need for Critical • Mathematics challenges looking at equity to perpetuate status quo a (Gutiérrez, 2000)
- Moving discussions of equity in math beyond access and achievement to address issues of identity and power (Gutiérrez, 2002, 2013, 2017; Martin, 2003, 2008) •

http://occrl.illinois.edu/tlc3

Context Matters

- There is growing scholarship addressing whiteness in mathematics education (Battey, 2013; Battey & Leyva, 2016; Gutiérrez, 2012, 2017)
- Much of the literature focuses on K-12 education or within four-year college contexts (Mesa, 2017)
- There is a veneer of invisibility of community colleges within this literature and lack of attention to naming community college mathematics as racialized spaces.

GO STATE

http://occrl.illinois.edu/tlc3

Beyond Equity

- Few connections have been made between mathematics learning the ways that math marginalizes relative to centering equity as a topic of inquiry with community college math education
- Need to employ theoretical perspectives that have heuristic value for moving beyond equity oriented rhetoric
- Take into account the collective histories of the groups for whom equity is desired, instead of attributing low achievement to race/ethnicity and acknowledge racism and how schools and the curriculum contribute to differential learning opportunities (Apple, 1992/1999)
- Just having all students take algebra isn't evident of achieving equity in mathematics education

SAN DIEGO STATE

http://occrl.illinois.edu/tlc3

New Directions and Considerations

- When it comes to community colleges and in this case mathematics education, is there a glossing over of the deeply embedded structures that produce inequities in definitions of equity?
- How have math reforms, even in lieu of being equity-minded efforts fall prey to perpetuating some groups being left out?
- Need to challenge definitions of equity to grapple with inequitable conditions URMs face in and outside of school, including the mathematical opportunities in these contexts

N DIEGO STATE

http://occrl.illinois.edu/tlc3

Theoretical Considerations

- Mathematics as whiteness
 - History of mathematics is not just to show that certain racial or cultural groups contributed to the knowledge we have today but to also highlight the ways in which settler colonialism or white supremacy are linked to scientific projects (e.g., astronomy being developed to help Europeans identify the location of slaves and to make efficient the export of their labor (Gutiérrez, 2017; Prescod-Weinstein, 2017).
- Critical Race Theory (Dixson & Rousseau 2005; Gillborn, 2015; Ladson-Billings & Tate 1995, Ladson-Billings, 1998; Tate, 1997)
 - Critical Race Pedagogy (Bell, 1992; Jennings & Lynn, 2005; Lynn, 2013).
- Interest Convergence Theory
 - Bell (1992)
 - Secada (1989) called this "enlightened self-interest"
 - "To discuss equity from the perspective of U.S. economic competition is to diminish its moral imperative and urgency" (Gutstein, 2003, p. 38).
- Social Justice Framing Toward Critical Mathematics
 - Mathematics education can also prepare (marginalized and dominant) students to analyze data from the world around them and to develop a critical eye on knowledge and stance toward justice (Gutiérrez, 2002)

http://occrl.illinois.edu/tlc3

Take Aways from the PBI Case Study

- The alignment between how instructors describe their approaches to teaching and how they enacted with them in their classroom did not demonstrate approaches that were explicit culturally responsive
- Beyond attending to teaching approaches, increasing the interactive segments, fostering greater relational practices in mathematics lessons/questions would improve students' opportunities to learn (e.g., more student centered approaches)

EGO STATE

http://occrl.illinois.edu/tlc3

Take Aways from the PBI Case Study

- More of students working in groups during class, sought answer questions for which they have to reflect and share outside of class
- Some evidence of problem/inquiry-based learning
- In spite of community colleges being referred to as democracy's doors or the last resort to defend an equitable agenda (Bailey & Morest, 2006)
- Classroom environments and college structures even in well intended departments have racial stratifying impact in the access, enrollment, and success in math reflective of "possessive investment in whiteness," the operationalization of white privilege and curricula that reinforce the status quo (Gutiérrez, 2017; Lipsitz, 1998; Martin, 2009).

EGO STATE

http://occrl.illinois.edu/tlc3

Special Thanks

Acknowledgments

The participants in our colleges and our research assistants: Darielle Blevins, Claire Boeck, Gabrielle Gerhart, Chauntee Thrill

Partial support for this work provided by the National Science Foundation (IUSE awards 1625918, 1625387,1625946,1625891). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation

EGO STATE

